Logarithmic Sobolev Inequalities on Homogeneous Spaces

Liangbing Luo, Queen's University

BIRS Workshop, Stochastics and Geometry

September 10, 2024

This is based on

- a joint work with M. Gordina, Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups, in *Journal of Functional* Analysis, 2022
- ➤ a joint work with M. Gordina, Logarithmic Sobolev inequalities on homogeneous spaces, Accepted by *IMRN*, 2023, https://arxiv.org/abs/2310.13470

Outline

- ▶ Logarithmic Sobolev inequality on \mathbb{R}^n
- ► Hypoelliptic Logarithmic Sobolev inequalities on homogeneous spaces
- Examples
- Further directions

Logarithmic Sobolev Inequality (L. Gross 1975)

\mathbb{R}^n

$$\mu$$
: Gaussian measure on \mathbb{R}^n and $d\mu(x)=rac{e^{-rac{|x|^2}{2}}}{(2\pi)^{rac{n}{2}}}dx$

$$f$$
: a $C_c^\infty(\mathbb{R}^n)$ function with $\|f\|_{L^2(\mathbb{R}^n,d\mu)}=1$

$$\int_{\mathbb{R}^n} f^2 \log f^2 d\mu \leqslant \frac{C}{L} \int_{\mathbb{R}^n} |\nabla f|^2 d\mu$$

where C is independent of n.

Sub-Riemannian manifolds

M: an n-dimensional connected smooth manifold

 \mathcal{H} : a $C^{\infty}(M)$ -submodule of Vec(M) satisfying Hörmander's condition, i.e.

$$\mathsf{Lie}(\mathcal{H}_p) = T_p M$$
 for any $p \in M$

$$\langle \cdot, \cdot \rangle_{\mathcal{H}}$$
: an inner product on \mathcal{H}

$$(M, \mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$$
: a sub-Riemannian manifold

$$\Delta_{\mathcal{H}}$$
: sub-Laplacian

Hörmander's condition $\Rightarrow \Delta_{\mathcal{H}}$ is hypoelliptic!

Examples:

- lacktriangle Standard/Isotropic Heisenberg group $\mathbb{H}^1_{\omega_0}$
- ► *SU*(2)

Hypoelliptic logarithmic Sobolev Inequality on M

 $(M, \mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$: a sub-Riemannian manifold

 μ : an analogue of Gaussian measure on M???

f: a $C_c^{\infty}(M)$ function with $\|f\|_{L^2(M,d\mu)}=1$

$$\int_{M} f^{2} \log f^{2} d\mu \leqslant \frac{C}{C} \int_{M} |\nabla_{\mathcal{H}} f|_{\mathcal{H}} d\mu$$

Is *C* independent of the dimension?

Fundamental Difficulties

- ► No canonical choice of reference measure
- ▶ The generator $\frac{1}{2}\Delta_{\mathcal{H}}$ is not elliptic but hypoelliptic
- ► Geometric techniques are not readily available
- Functional inequalities are more difficult to prove or have to be modified

Heisenberg groups:

- ► H-Q. Li (2006): 3-dimensional, isotropic
- N. Eldredge (2009), W. Hebisch and B. Zegarliński (2010): for arbitrary *n*
- ▶ R. Frank and E. Lieb (2012): on CR sphere
- ► F. Baudoin and M. Bonnefont (2012): invariant measure
- M. Bonnefont, D. Chafaï and R. Herry (2018): random walk approximation for n=1

- ► E. Bou Dagher and B. Zegarlinski (2021): an example of non-isotropic case
- Y. Zhang (2021): non-isotropic

Remark

No known results giving with the constant **independent** of the dimension!

SU(2):

► P. Ługiewicz, B. Zegarlinski (2007)

Main result

Theorem: (Gordina and L. 2023)

M: a homogeneous G-space G: an n-dimensional connected Lie group $(G,\mathcal{H},\langle\cdot,\cdot\rangle_{\mathcal{H}})$: a left-invariant sub-Riemannian structure μ_t^G : heat kernel measure on G of $\Delta_{\mathcal{H}}^G$ $LSI(C(G,t),\mu_t^G)$ holds

Then,

► M has a natural sub-Riemannian structure $(M, \mathcal{H}^M, \langle \cdot, \cdot \rangle_{\mathcal{H}}^M)$ induced by the transitive action of G.

Main result

Theorem: (Gordina and L. 2023)

M: a homogeneous G-space G: an n-dimensional connected Lie group $(G, \mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$: a left-invariant sub-Riemannian structure μ_t^G : heat kernel measure on G of $\Delta_{\mathcal{H}}^G$ $LSI(C(G,t),\mu_t^G)$ holds

Then,

There exists the *unique* hypoelliptic heat kernel measure μ_t^M on M such that the heat equation holds.

Main result

Theorem: (Gordina and L. 2023)

M: a homogeneous G-space G: an n-dimensional connected Lie group $(G, \mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$: a left-invariant sub-Riemannian structure μ_t^G : heat kernel measure on G of $\Delta_{\mathcal{H}}^G$ LSI($C(G, t), \mu_t^G$) holds

Then,

 \blacktriangleright LSI_C $(M, \mathcal{H}^M, \mu_t^M)$ holds and

$$C(M,t) = C(G,t).$$

Idea of proof

Homogeneous space characterization theorem

$$M\cong G_p\backslash G$$

 $M \cong H \setminus G$ for some closed subgroup H of G.

Type I: Heisenberg-related examples

M: a step-2 sub-Riemannian manifold $G = \mathbb{H}^1_{\omega_0} \times \cdots \times \mathbb{H}^1_{\omega_0}$: product of 3-dimensional Heisenberg groups H: a closed subgroup of $G \Rightarrow$ It has a characterization!

Theorem (M. Gordina and L, 2023)

- \blacktriangleright M satisfies LSI($C(M, t), \mu_t^M$).
- ► $C(M, t) = C(\mathbb{H}^1_{\omega_0}, t) = (c(\omega_0))^2 t$.
- ightharpoonup C(M,t) is independent of its dimension!

Example 1: Grushin Plane

 $M \cong \mathbb{R}^2$: the Grushin plane

$$\Delta_{\mathcal{H}}^{M} = \frac{\partial^{2}}{\partial u^{2}} + u^{2} \frac{\partial^{2}}{\partial v^{2}}$$
: the Grushin operator

$$G=\mathbb{H}^1_{\omega_0}$$

$$H = \{(0, y, 0) : y \in \mathbb{R}\}$$

Proposition (M. Gordina and L, 2023)

- ► The Grushin plane satisfies $LSI(C(M, t), \mu_t^M)$.
- $C(M,t) = C(\mathbb{H}^1_{\omega_0},t).$

Example 2:

Non-isotropic Heisenberg groups G

 (V,ω) : a finite-dimensional symplectic space

 ${\it G}$ can be regarded as ${\it V} imes \mathbb{R}$ with a non-commutative group law given by

$$\begin{aligned} &(\mathsf{v},z)\cdot(\mathsf{v}',z') := \left(\mathsf{v}+\mathsf{v}',z+z'+\frac{1}{2}\omega\left(\mathsf{v},\mathsf{v}'\right)\right),\\ &(\mathsf{v},z),(\mathsf{v}',z') \in V \times \mathbb{R},\\ &\omega:V\times V \longrightarrow \mathbb{R} \text{ is a symplectic bilinear form on } V \end{aligned}$$

Non-isotropic Heisenberg groups \mathbb{H}^n_ω

 $\mathbb{R}^{2n+1} \cong \mathbb{R}^{2n} \times \mathbb{R}$ equipped with a non-commutative law

We have
$$\omega(v, v') = \sum_{i=1}^{n} \alpha_i(x_i y_i' - x_i' y_i), \alpha_i \in \mathbb{R}^+$$
.

LSI on non-isotropic Heisenberg groups

$$G=\mathbb{H}^1_{\omega_0} imes\cdots imes\mathbb{H}^1_{\omega_0}$$

$$H = \{(0, z_1, \dots, 0, z_n) \in \mathbb{H}^1_{\omega_0} \times \dots \times \mathbb{H}^1_{\omega_0} : \sum_{i=1}^n \alpha_i z_i = 0\}$$

Theorem (M. Gordina and L,2022)

- \blacktriangleright \mathbb{H}^n_{ω} satisfies $LSI(C(\mathbb{H}^n_{\omega},t),\mu^{\omega}_t)$.
- The logarithmic Sobolev constant $C(\mathbb{H}^n_{\omega}, t)$ is independent of the symplectic bilinear form ω and the dimension!

Infinite-dimensional Heisenberg-type groups G

 (W, H, μ) : a real abstract Wiener space G can be regarded as $W \times \mathbb{R}$ with a non-or-

G can be regarded as $W imes \mathbb{R}$ with a non-commutative group law given by

$$(w_1, c_1) \cdot (w_2, c_2) = \left(w_1 + w_2, c_1 + c_2 + \frac{1}{2}\omega(w_1, w_2)\right),$$

 $(w_i, c_i) \in W \times \mathbb{R}, i = 1, 2,$
 $\omega : W \times W \rightarrow \mathbb{R}$

is a continuous surjective anti-symmetric bilinear form on W.

Remark

 $G_{CM}:=H imes\mathbb{R}$ is the Cameron-Martin subgroup of G.

No Haar measrue!

 g_t : Brownian motion whose generator is $\frac{1}{2}L$

 μ_t : the law of g_t for t > 0

Theorem (M. Gordina and L, 2022)

There exists a Markovian closed symmetric form (Dirichlet form) $\mathcal{E}_t(\cdot,\cdot)$ associated to the heat kernel measure μ_t on $L^2(G,d\mu_t)$.

Logarithmic Sobolev inequalities on G

Theorem (M. Gordina and L, 2022)

For
$$f \in \mathcal{D}(\mathcal{E}_t)$$
 and $t > 0$,

$$\int_{G} f^{2} \log f^{2} d\mu_{t} - \left(\int_{G} f^{2} d\mu_{t} \right) \log \left(\int_{G} f^{2} d\mu_{t} \right) \leqslant C(\omega, t) \mathcal{E}_{t}(f, f).$$

Logarithmic Sobolev inequalities on G

Theorem (M. Gordina and L, 2022)

For
$$f \in \mathcal{D}(\mathcal{E}_t)$$
 and $t > 0$,

$$\int_{G} f^{2} \log f^{2} d\mu_{t} - \left(\int_{G} f^{2} d\mu_{t}\right) \log \left(\int_{G} f^{2} d\mu_{t}\right) \leqslant C(\mathbb{H}^{1}_{\omega_{0}}, t) \mathcal{E}_{t}(f, f).$$

Example 3: Compact Heisenberg nilmanifolds

M= a compact Heisenberg nilmanifold G=(2n+1)-dimensional isotropic Heisenberg group \mathbb{H}^n H= a lattice subgroup of GTheorem (M. Gordina and L,2023)

- \blacktriangleright M satisfies LSI($C(M, t), \mu_t^M$).
- $C(M,t) = C(\mathbb{H}^1_{\omega_0},t).$
- The logarithmic Sobolev constant C(M, t) is independent of the dimension!

Type II: SU(2)-related examples

M: a sub-Riemannian manifold

$$G = SU(2) \times \cdots \times SU(2)$$

H: a closed subgroup of G

Theorem (Gordina and L, 2023)

- \blacktriangleright M satisfies LSI $(C(M, t), \mu_t^M)$.
- ightharpoonup C(M,t) = C(SU(2),t).
- ightharpoonup C(M,t) is independent of its dimension!

Example 1: Hopf fibration

$$M=\mathbb{CP}^1$$

$$G = SU(2)$$

$$H = S^1$$

Proposition (Gordina and L, 2023)

- $ightharpoonup \mathbb{CP}^1$ satisfies LSI $\left(C\left(\mathbb{CP}^1,t\right),\mu_t^{\mathbb{CP}^1}\right)$.
- $ightharpoonup C\left(\mathbb{CP}^1,t\right)=C\left(SU(2),t\right).$

Example 2: SO(3)

$$M = SO(3)$$

$$G = SU(2)$$

$$H=\mathbb{Z}_2$$

Theorem (Gordina and L, 2023)

- ► SO(3) satisfies $LSI\left(C(SO(3), t), \mu_t^{SO(3)}\right)$.
- ightharpoonup C(SO(3), t) = C(SU(2), t).

Example 3: SO(4)M = SO(4)

$$G = SU(2) \times SU(2)$$

$$H=\mathbb{Z}_2$$

Theorem (Gordina and L, 2023)

►
$$SO(4)$$
 satisfies $LSI\left(C(SO(4), t), \mu_t^{SO(4)}\right)$.

$$ightharpoonup C(SO(4), t) = C(SU(2), t).$$

ightharpoonup C(SO(4), t) is independent of its dimension!

Further Directions

- ▶ Other groups? Other spaces? Other symmetries?
- ► Infinite-dimensional extensions?
- ► Related problems?

Thank you!